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The known CEPA variants CEPA (v) with v = 0, 1, 2, 3 and two new ones 
with v = 4, 5 are compared both formally and for various numerical examples 
with CP-MET. The main conclusions are: 1. In those situations where both 
CP-MET and the CEPA variants are justified (i.e. for "good"  closed shell 
states) the correlation energies obtained with the 7 different schemes differ 
very little (by something like +2%),  with CEPA (1) closest to CP-MET 
(difference usually a fraction of 1%) and CEPA (4) nearly as close; this is 
rather insensitive to whether one uses canonical or localized orbitals. Even 
CEPA (3) is not too far from CP-MET, which confirms an earlier suggestion of 
Kelly. 2. In those cases where one of the 7 schemes fails (e.g. due to near 
degeneracy as in covalent molecules at large internuclear distances) the other 
6 usually fail as well, though CEPA (0) is then somewhat poorer  than the other 
schemes. Then no longer CEPA (1) but rather CEP A  (3) is closest to CP-MET 
and then all schemes converge much better in a localized representation. 3. 
CEPA (2) usually leads to best agreement with experiment since it simulates to 
some extent triple substitutions. In none of the studied examples does CP- 
MET show a significant superiority as compared to the other schemes. Possible 
improvements to extend the domain of applicability of these methods are 
discussed. 

Key words: Electron correlation - Coupled electron pair approximation 
(CEPA) - Coupled cluster (CC) - Coupled pair many electron theory (CP- 
MET) - Many-body perturbation theory (MBPT) - M~ller-Plesset pertur- 
bation theory (MP-PT) - Near degeneracy. 

1. Introduction 

A method, called CP-MET (coupled pair  many  electron theory) developed by 
Ci~ek [1] in 1966 for the treatment of electron correlation in atoms and molecules, 
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based on earlier work of Coester and K/immel [2, 3] in nuclear theory, has been 
"discovered" for large-scale ab initio quantum chemical calculations only quite 
recently [4-6, 22, 23]. 

That  this did not occur earlier must to some extent be ascribed to the fact that 
Ci~ek's paper was hard to read, and this not only because it was formulated in 
terms of diagrams at a time when diagram techniques were not ye tas  popular in 
theoretical chemistry as they are nowadays. 

The apprehension of Ci~ek's method by people working with traditional quantum 
chemical methods such as CI [7] was made difficult by a difference in philosophy, 
so to say. The CI equations are easily explained to a beginner as eigenvalue 
equations of the matrix representation of the Hamiltonian in a basis of Slater 
determinants or of configuration state functions, although the real difficulties arise 
when it comes to expressing the matrix elements between configurations in terms 
of the integrals over the orbital basis [7]. However  this second step, as formidable 
as it may be, can be regarded as "technical",  one does not need to understand it in 
all details, in order  to understand what CI is, unless one wants to write a CI 
program. In Ci~ek's method, however, the two analogous steps were mixed from 
the very beginning. There was no access to the theory for a reader  who did not care 
about what in the field of C! would be regarded as technical details. 

That  a two step formulation analogous to that current for CI is also possible for 
CP-MET,  and that what we regard as the physical essence of CP-MET can be 
written in two lines, became evident only later [8, 9] in spite of an earlier 
comparison of the traditional and the diagrammatic approaches to CP-MET [10], 
in which the main stress was put  on demonstrating the superiority of the diagram 
technique. 

If one cares less about differences in the original presentation, CP-MET and CI 
have, in fact, much in common and realizing this one can use the experience that 
has meanwhile been accumulated in the field of CI [7] to implement the CP-MET 
features into a traditional CI program. 

CEPA, t h e " c  ouple d electron p air a pproximation" [ 11, 12], has unlike CP-MET 
from the very beginning been developed in the context of large scale ab initio 
quantum chemistry in a rather pragmatic way. That  CEPA and CP-MET were - 
apart from their admitted common source in IEP A  (the " independent  electron 
pair approximation" [8], which is the same as Sinano~lu's "many-electron 
theory"  M E T  [13] or Nesbet 's [14] two par t ic le-Bethe-Goldstone theory) - 
intimately related, became fully obvious only later [8, 9]. 

CEPA, or rather C E P A - P N O  (PNO for pair natural orbitals) has been conceived 
[11] as a generalization of I E P A - P N O  [15, 16]. Although PNO-CI  [11] has been 
developed simultaneously as a variant of traditional CI (limited to double 
substitutions), which made the relation of CEP A  to CI very clear, it had not been 
realized by the traditional CI people for quite a while that the basic ideas of CEP A  
can be easily implemented into any kind of CI program and are not limited to the 
use of PNO's.  The "Davidson correct ion" to CI [17] was a step in the direction of 



Comparison of CEPA and CP-MET Methods 389 

CEPA [18] though this was first not realized. This correction had in fact been 
studied earlier [15] and can even be traced further back [13]. The relations of the 
"Davidson correction" with earlier work and a generalization of it have been 
discussed by Davidson and Silver [ 19]. Nowadays the implementation [ 18, 20, 21] 
of CEPA into so-called "direct CI-methods" is a serious alternative to CEPA- 
PNO. 

After it had been realized that CEPA and CP-MET differ by the presence of a few 
extra terms in CP-MET, Taylor et al. [22, 23] were the first to implement these 
CP-MET terms into the Karlsruhe CEPA-PNO program [12]. Taylor et al. had to 
face serious computer limitations and they were forced to use strongly truncated 
PNO expansions, which introduced a significant numerical noise into the results. 
Moreover their formulae [24] did not seem to be fully correct. After we had 
realized that it is nearly hopeless to derive these by hand we developed a computer 
program for their construction [4]. 

After Taylor et al. [22, 23] a few more CP-MET computer programs not based on 
PNO's for a b  i n i t i o  applications were developed, mainly by Bartlett and Purvis [5] 
and by Pople et al. [6] who introduced a new name (coupled cluster) and a new 
abbreviation (CC). The program used in the present paper has been coded 
independently [4]. An interesting variant of CP-MET has been presented by 
Nakatsuji and Hirao [25], some formal development was also carried out by the 
Harris-Monkhurst group [26, 27] and by Paldus [28]. 

The aim of the present paper is to compare CP-MET with various CEPA-variants 
[8]. The formal comparison (see also Refs. 8 and 17) will be given in Sect. 2 and 
numerical results will be discussed in Sect. 3. We also consider situations where 
both CEPA and CP-MET must fail, e.g. for potential curves at large distances of 
systems that dissociate into open shell states. 

2. The Formal Relation Between CI, CEPA and CP-MET 

In all three schemes we start from a reference function ~P (e.g. a closed shell Slater 
determinant) and search for a wave operator W that transforms (P into an 
improved wave function ~ (in intermediate normalization) 

= Web; <qblwlcP> = (@1~)= 1 (1) 

W is expanded in a set of basis operators Rk 

W = 1 + Z  CkR k  (2) 
k 

where the Rk are usually single and double substitution (excitation) operators 

a § 
R i  = a a a i ,  R ~  b + + = a a a b ajai  (3) 

from spin orbitals ~bi occupied in cb to spin orbitals tPa unoccupied in dp (virtual). 
The ~/,p are supposed to form an orthonormal set. 
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The CI equations can be obtained by assuming that xt' satisfies the Schr6dinger 
equation 

H �9 = HOP + Y. ckHRk @ = E �9 = E OP + E Y~ CkRk OP (4) 
k k 

on multiplying it on the left by (OPl or by (OPtR ~- 

Q~)I H I Iff~} + ~" Ck {OPIHRk lop} = E (5a) 
k 

(OPlR [HIOP) + Y. Ck (OPIR ~HRk lOP) = Ec, .  (5b) 
k 

The CI equations are usually formulated for a �9 normalized to unity, but this is a 
minor detail, 

An al ternat ive-  and more convincing-way to the CI equations goes via the 
variation principle. One requires that the expectation value ( ~ I H [ ~ ) / ( ~ I ~ )  is 
stationary with respect to variation of the Ck and gets the condition (5b), while the 
stationary energy is given by (5a). 

The CI energy is "variational" i.e. it furnishes an upper bound to the true energy, 
but it is - for the operator basis gk limited to single and double substitution 
operators - not "size consistent" (this name [6] is now commonly used, though it is 
somewhat misleading) - i.e. it has not the correct dependence on the number of 
electrons [15, 29-31]. 

Rayleigh-Schr6dinger perturbation theory (but not Brillouin-Wigner pertur- 
bation theory), either starting from the bare nuclear Hamiltonian or, following 
M011er and Plesset [32], from the Hartree-Fock Hamiltonian, is "size consistent", 
but it has other drawbacks, the perturbation series may not converge at all or 
converge too slowly. 

One can take care of the correct dependence on the particle number in the 
non-perturbative context, if one replaces the linear expansion (2) of the wave 
operator by the exponential form 

W =exp S =exp {~k dkRk} (6) 

proposed by Coester and K/immel [2, 3] (and suggested even earlier by Hugen- 
holtz [33] from an analysis of perturbation theory). For a review of applications of 
this ansatz in nuclear theory see K/immel et al. [34]. 

Multiplying the Schr6dinger equation 

H eS OP= E eS OP (7) 

on the left by (OP[ or by (OP[R ~ leads to 

(OPIH e s lop) = E <OPle s [(I)) (7a) 

(OP]R ~H e slop} = E (OPIR ~- e s lop)- (7b) 
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If ap is a closed shell Slater determinant and if the operator basis {Rk } contains only 
double substitution operators the power series expansion of e s in (7) breaks off 
and one gets the CP-MET equations 

<apIH lap> + <apIHS I ap> -- E (8a) 

(ap[R ~H lap) + (ap[R ~s + �89 ~HS2Iap) = E (apIR ~-S lap) (8b) 

which can, in view of (6), also be written as 

<aplHlap) + Y dk (apIHRk lap) = E (9a) 
k 

+ + (aplRkHlap) 2d,(apIR~HRIIap)+�89 Y~ dldm(aplR'[HRtRmlap)=Edk. (9b) 
l l ,m 

If the basis contains single substitution operators as well, (8a) contains also a term 
in S 2 and the expansion of (7b) goes up to O($4). 

While the CI equations (5) can also be obtained as stationarity conditions for the 
energy expectation value, this is not the case for the CP-MET equations (9). If one 
tries to make (q~lHl~I,)/(q~],I~) stationary, one gets terribly complicated equations 
and nobody has so far bothered to solve them (for some attempts on these lines see 
however Ref. 35). 

The energy E obtained from (9) is not an upper bound to the true energy and it is 
therefore hard to judge the quality of a CP-MET calculation from the accuracy of 
the energy. 

There is a possibility to reconcile size consistency and variational stationarity, 
namely by using the unitary exponential ansatz [8, 36] 

W ~ + = e  , cr = - o "  . (10) 

A more detailed account of the theory [36] based on this ansatz will be published 
elsewhere. 

The system (9) is non-linear; it can be solved iteratively, e.g. by neglecting the 
non-linear terms in the first iteration cycle. 

Of course, if one neglects the bilinear terms in (9b) altogether one gets the CI 
system (5) which is not size consistent. One rather must substitute E in (9b) from 
(9a) 

(apIR ~,H lap) + Y. dl (aplR ~HRI lap) + �89 ~ dldm (apl R ~HRIR,~ lap) 
I l ,m 

= dk (apIH]ap) + Z dkd, (apIHR, lap) (11) 
1 

and ignore then all bilinear terms in order to get a zeroth-order approximation 

(ap ]R ~-HIap) + Z dt (apIR ~HRz lap) = dk (aplHlap) (12) 
l 

which is size consistent. Eqn. (12) (together with 9a) represents the "linear 
version" of CP-MET [1] and is now usually called CEPA (0) [8]. Eqn. (12) differs 
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from the CI equation (5b) by the replacement of the CI energy E by the 
"unperturbed" energy (qblHIqb). 

CEPA (0) looks very appealing since many other ways to solve the many body 
Schr6dinger equation also lead to CEPA (0) as the first non-trivial approach. One 
gets there from the unitary ansatz (10) [8], as well as from perturbation theory if 
one searches for the optimum partition of the Hamiltonian H into an unperturbed 
H0 and a perturbation V [37]. (For still another way [18] see the end of this 
section.) 

Unfortunately CEPA (0) is never exact, even not for a supersystem that consists of 
non-interacting two-electron systems, e.g. He atoms at pairwise infinite distance. 
However all CEPA-variants to be discussed below (except CEPA (5)) are exact in 
this special case (provided that single substitutions are included and that one uses 
localized MO's). 

Even if one does not want to neglect all bilinear terms in (11), one realizes that 
many of these terms on the 1.h.s. and the r.h.s, of (11) cancel, namely all those that 
can be represented by "unlinked diagrams" [8]. 

One can argue that the remaining (not cancelled) terms on the l.h.s, of (11) are 
small and of arbitrary sign, such that their net contribution may be negligible, and 
keep only the remaining terms on the r.h.s. 

(~lR;HldP)+ E dl(~[R~HR,l~)=dk (~lHIdP)+ ~,dkdl(~[HRlldP)t (13) 
l l 

where the subscript L stands for linked. This explicitly means that only such terms 
are taken in the sum where the operators R~ and Rk have at least one index in 
common. (Paldus [28] points out that one should use the term "connected ' ra ther  
than "l inked" to be conform with the meaning of these terms in perturbation 
theory. He is probably right, but the tradition is in favour of "l inked" and 
misunderstandings are hardly possible, since we are not in the framework of 
perturbation theory anyway.) 

The approximation characterized by Eqn. (13) has been proposed by Kelly [38] in 
a slightly different context a few years before Ci~ek's presentation of CP-MET. 

Let us, for the moment,  refer to this as Kelly's approach. Kelly himself has never 
applied it, he became more interested in perturbation theory (MBPT) [39]. 

We have to point out a source of possible misunderstanding. In our 
nomenclature - because we argue in terms of particles only, i.e. we do not use the 
particle-hole formalism - there is only a partial cancellation of the terms on the 
r.h.s, of (11), in fact those terms on the r.h.s, that do not cancel are those taken 
care of in Kelly's approach (13). In an alternative formalism that is closely related 
to MBPT, nothing is left on the r.h.s, and the "Kelly terms" appear on the l.h.s. 
with negative sign as so-called EPV ("exclusion principle violating") terms. The 
argument is then, that EPV terms are usually quite large and must, at variance 
with "non-EPV" or " E P A "  ("exclusion principle allowed") terms of the same 
order, not be neglected. 
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We can write CI, CEPA (0) and Kelly's approach in one common set of equations 

(qblH [~) + Y. ~/k (dP[HRk [~) = E (laa) 
k 

(dP]R ~-H [~) + Y, (~[R ~HRl [dP)dl : Wkdk (14b) 
k 

with Wk = E  in the case of CI, Wk = <~ln[~> for CEPA-0 and 

w(~ K) = (~IHI~) + E d~('I'IHR~ [~k  (15) 
t 

with K for Kelly (where L means: linked to k). One can also write 

w (16 )  

The energy shift AW is then 0 for CEPA (0), equal to the total correlation energy 

a E  = E  - (OIH]~> = E dl(d~lHR,[ d;) (17) 
l 

for CI, and the sum of all contributions to 2rE which are linked to Rk, for Kelly. 

One can suggest alternative energy shifts by the following arguments. 

If o n e  pair of electrons characterized by the occupied spin orbitals ~Pi and ~j is 
independent of the rest of the system, the energy shift to be taken for all double 
substitutions from this pair is just the correlation energy 

Eli = ~ di.iab (dP[nRqab [(I) ) (18)  
a <_b 

of this pair (d~ b and R~bin (18) have an obvious meaning, see Eqn. 3). 

So the simplest modification of CEPA (0), that leads to the exact result for a 
supersystem consisting of non-interacting pairs, consists in choosing the IEPA 
energy shift [ 13-16] 

W~j = (qb[Hlqb)+eij (19) 

for all R ~b. This is the recipe of the standard CEPA version [11, 12] that has later 
been called CEPA (2) [40]. 

Kelly's approach, as it is formulated in Eqn. (13), has a different energy shift for 
each substitution operator R~ b. One can however interpret "l inked" with respect 
to the occupied orbitals (holes) ~i and ~j only and get thus a slightly modified 
scheme, called CEPA (3), which is essentially Kelly's scheme but with a common 
Wij for every pair. 

CEPA (1) is somewhat in between CEPA (2) and CEPA (3). Meyer [11, 40] was 
led to CEPA (1) in searching for a scheme that is, in a special case, invariant with 
respect to a unitary transformation from localized to canonical orbitals. Neither 
CEPA (2) nor CEPA (3) have this invariance property. The best justification of 
CEPA (1) is probably a heuristic one, the energy shift of CEPA (2) is "too small", 
that of CEPA (3) "too large", so CEPA (1) should be a good compromise (see 
however Sect. 3). 
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Before the variants CEPA (1) and CEPA (2), originally written CEPA-1 and 
CEPA-2,  were proposed [40] the notation CE P A  (1) had been used in a different 
meaning [12] that has not been taken up since. 

As to the inclusion of single substitutions in CEPA see Ahlrichs [18]. 

In a previous review [8] the definition of these various CEPA-variants  was, for 
simplicity's sake, given on spin-orbital level. 

In practice, one does, however, not want to use pairs of spin-orbitals, but rather 
spin-irreducible pairs. For closed-shell states three types of pairs have to be 
considered: II, sIJ and tIJ which are defined in terms of the (spin free) orbitals ~ 
and q~s and where the superscripts s and t mean that ~i and Ej are coupled to a 
singlet or a triplet. One can then eliminate spin and interpret " l inked" and 
"unl inked"  in terms of orbitals rather than spin orbitals. The expressions for the 
energy shifts AWk get thus somewhat more complicated, but the computation is, 
of course, much simplified. The energy shifts are collected in Table 1 (see also 
Ref. 9). 

Two new variants are included. 

In CEPA (4) all interorbital contributions eis to the energy shift are neglected 
except the particular se~s and 'e~j for the pair IJ that one considers. For 
intraorbital pairs the energy shift is the same as in CEP A  (2), but for interorbital 
pairs it contains en + ejj, i.e. for these there is a larger shift. This is better  justified 
than the choice of CEPA (2) unless one argues that the formally too small shifts in 
C EP A (2) simulate the effect of triple substitutions. 

C EP A (5) is finally the analogon to CEPA (3) that is obtained if one does not start 
from the Coester-K/immel eS-ansatz, but from the unitary ansatz (10) up to 3 rd 

order in o-, if one neglects the unlinked terms but keeps the EPV terms. 

Table 1. Energy shifts for various CEPA-variants  

aw(n)  aw('xJ) aw('iJ) 

C E P A  (0) 0 

C E P A  (2) EIX 

C E P A  (1) e n +1 Y~ 
K ( # I )  

+ terse ) 

C E P A  (3) en+ Y~ 
K ( # I )  

~- tel K ) 

CEPA (4) en 

CEPA (5) see text 

(%K 

Cer~ 

0 

sEij 

I{EH +EJJ q-sEij q-tEij 

+�89 Z (%,, 
K(~Id)  

+tEiK +SEjK +tEjK ) 

eu + Ejs +�89 %rs +5 texs 

+�89 E r + 'ezK 
K ( ,~Xd ) 

+sEjK + t e j r )  

EII ~. ~JJ _~ �89 s 5 t EiJ + 6 elJ 

0 

r e / /  

as W~IJ) 

5 s  13 t  
etx+e.r.r+g ex.r+~ err 

+~ 2 EEZK +tEIK 
K ( g l j )  

+SEjK +tEjK ) 

5 s  13 t  
C.H-I-ejj+ ~ Eijq- ~ EIJ 
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The energy shifts in CEPA (5) are 4 of those of CEPA (3), but in CEPA (5) Eqn. 
(14) is replaced by 

(~IH lob) + 4 2 dk (a, II-IR~ I*) + 1 E d* {(a, IR 2NR, I~)- (a, IH I~)a~,Id, = E 
k k,l  

(20a) 

(*IR ~-H[~) { 1 -  2 ~ id,12 } + ~ (,IR ~s I,)d ' = Wkdk. (20b) 

CP-MET differs from CEPA (3) by the presence of various nonlinear terms. We 
have implemented them in the PNO formalism. The formal expressions are too 
lengthy to be given here, but they are available on request. 

CEPA and CP-MET are also related to perturbation theory (PT) (for a recent 
comparison see Ahlrichs [ 18], who made the important statement, that all existing 
MBPT schemes are either identical to or approximations to one of the CEPA 
variants). The "M011er-Plesset perturbation theory" (MP-PT) used by Pople et al. 
[41] which is formulated purely analytically, and the diagrammatic "many-body- 
perturbation theory" (MBPT) used by Robb [42], Silver et al. [43] and others 
[44-46] are completely identical, except of course for different computer imple- 
mentation and for analysis and interpretation. 

We assume that the Hartree-Fock ground state �9 is always the reference function. 

Then MBPT (2), i.e. 2 na order PT, is of "IEPA-type", in other words to 2 nd order 
in PT the pairs behave as independent. Couplings between the pairs show first up 
to 3 rd order. To 2 na order IEPA and the exact solution agree. IEPA can be 
obtained by summing a special class of diagrams, namely all independent pair-like 
diagrams (mainly the so-called "ladder diagrams") to infinite order [47]. 

PT to 3 rd order is of "CEPA-type", i.e. to 3 rd order in the perturbation parameter 
of MP-PT the exact solution, all CEPA-variants and CP-MET agree. A certain 
procedure that takes care of all diagrams of 3 rd order and sums other similar 
diagrams to infinite order [46, 48] leads in fact to CEPA (0) [18]. 

Differences between the various CEPA-schemes and CP-MET first show up in 4 th 
order of PT [ 18]. 

However, none of these schemes (not even CP-MET) agrees with the exact 
solution to 4 th order. In 4 th order PT contributions show up that are not 
expressible through electron pairs (or single substitutions), but which require 
electron triples. These terms are rather complicated and most applications of 4 th 

order PT are limited to so-called SDQ-MBPT (4), (S for single, D for double, 
Q for quadruple substitutions, where the latter are actually pairs of double 
substitutions). 

SDQ-MBPT (4) is identical with the perturbation expansion up to 4 th order of 
CP-MET, while full 4 th order MBPT contains terms that are not included in 
CP-MET. But conversely full 4 th order MBPT does not contain certain terms that 
are taken care of by CP-MET, namely terms of 5 th and higher orders. It has been 
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pointed out previously [5, 6] that in many practical cases the results of SDQ- 
MBPT (4) are very close to those of CP-MET, which indicates that in those cases 
5 th and higher orders are not important, but there is no reason to believe that this is 
always so. 

Anyway the lowest non-trivial order in perturbation theory to which CP-MET 
and the C E P A  variants can be compared is the 4 th order. The 4 th order version of 
CEPA (0) is D-MBPT (4), in which only double substitutions are taken care of, 
while the 4 th order version of CP-MET namely SDQ-MBPT (4) has already been 
mentioned. 

The 4 th order approximations of the other CEPA variants can also be defined. Zirz 
and Ahlrichs [21] have performed a numerical comparison of various CEPA-  
variants and CP-MET o n  4 tla order level using also data from Bartlett and Purvis. 
We are comparing these data with our 0o order results in Tables 3 to 5. 

3. Problems of Near Degeneracy 

The determination of the CEPA or CP-MET coefficients leads to solutions of 
systems of the type 

Y. (Hk~ -- Wk6kl)d, = hk (21) 
l 

with 

Hkt = (dPlR ~HR, Id~}; hi = ((I)IHRI I(~). (22) 

If Wk is constant as in CEPA (0), the system (21) is linear, otherwise an iterative 
solution through a chain of linear systems is necessary. 

Of course, the solution of the linear system is only possible if the matrix 
{Hk~ - Wk~,l} is non-singular, for CEPA (0) if Hkl, i.e. the matrix representation of 
the Hamiltonian in the space of configurations doubly (and singly) excited with 
respect to ~,  has no eigenvalue equal to Wk =E0 = (~]H[dp). 

If �9 is an approximation to a non-degenerate ground state one can expect that all 
eigenvalues of {Hkt} are higher than E0 i.e. that in CEPA (0) no singularity 
occurs, and afortiori not in CP-MET or the other CEPA-variants, where in view 
of the negative energy shifts Wk <E0. 

If �9 is degenerate with some other (doubly substituted) configuration qb', such that 
(qblHIqb') ~ 0, the matrix {Hkl --Eot~kl} may become singular, but the energy shift 
of the other schemes (which lowers Eo to Wk, but does not lower E ' =  (qb'lHIqb')) 
will usually make the other schemes well-behaved. Nevertheless, the results will 
not be very reliable in any case, since it is without doubt a poor approximation to 
include all (singly and) doubly substituted configurations with respect to qb but not 
also with respect to q~'. 

More interesting are situations where no ~ '  is exactly degenerate with qb, but 
where ~ '  has an energy E '  only slightly above Eo (so-called near-degeneracy). If 
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IE'-E0[ is smaller than or of the same order  as the various energy shifts, large 
differences between the various CEPA-variants are to be expected, and especially 
C EP A (0) should overestimate the expansion coefficient of qb'. 

Large differences between the CEPA variants are hence a warning, and an 
indication of near-degeneracy. 

One can argue that there should be "exact"  energy shifts, which are usually not 
known, but which lead to the exact coefficients of singly and doubly substituted 
configurations and hence to the exact correlation energy 

A E  = ~. d*khk (23) 
k 

(in the same basis of course). 

An alternative expression for AE is 

= ~ d~ (Hkl -- Wkakl)dl. (24) 
k,l  

One can conclude from this expression and its stationarity with respect to 
variations of the dk, that differences in the Wk affect AE basically as 

aWkld l 2. (25) 
If all coefficients are small (dk << 1: "dynamical correlation"),  different energy 
shifts have little effect on AE, while for large coefficients ("non-dynamical 
correlation"),  aXE depends sensitively on the energy shift. However,  let us stress 
this again: a more sophisticated treatment of correlation is then necessary and 
even CP-MET is not good enough (except, of course, for the trivial case of a 
two-electron system, or for "effective two electron systems" as the Be atom, 
where even I EPA is exact). 

A model study in which near degeneracy situations were simulated, was recently 
performed by Jankowski and Paldus [49]. 

4. Basis Sets 

The basis sets were chosen so as to make possible a direct comparison with 
previous results. 

For B H 3  a minimal basis was chosen similar to that used by Taylor et al. [22]. The 
other basis sets are usually of "double-zeta+polar iza t ion"  quality, and are 
explained in Table 2. They allow a direct comparison with previous calculations. 
For  Be and Be2 a larger basis was used. 

5. Discussion of the Numerical  Results 

On Table 3 the results for the BH3 molecule for two basis sets are presented. 

To facilitate the comparison of the various methods, for each basis set the 
CP-MET energies were arbitrarily used as reference values (100%). (This does 
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Table 2. Basis sets used 

S. Koch and W. Kutzelnigg 

B H  3 (a) minimal STO(2l/1) simulated by fully contracted Gaussians 
(10 for lsB, 4 for 2sB, 5 for 2pB, I0 for isrr) after Huzinaga [64] 
(b) DZ + P: (951/51) Huzinaga basis contracted to (531/31) 
with r/d (B) = 0.61; ~/p (H) = 0.65 

H20 (951/51) contracted to (531/31) 
with r/d (0) = 1.25, r/v (H) = 0.75 

HCN (951/951/31) contracted to (531/531/31) 
with '/d (C) = 0.7, ~Ta (N) = 0.95, r/p (H) = 0.8 

N2 (951) contracted to (531); r/d = 0.95 

F 2 (951) contracted to (531); r/d = 1.4 

Be and Be 2 (10 + 1, 5, 2) contracted to (8, 3, 2) 
with 10s from Huzinaga [64], additional s with ~ = 0.015; 
r/p = 3.0, 1.0, 0,316, 0.12, 0.04 (the first three contracted with coefficients 0.02662, 
0.07353, 0.40988) 
~0a = 0.35, 0.12 

contracted are always the first (steepest) functions 

no t  necessarily mean  that  we regard  C P - M E T  as the best  possible method .  Full CI  
in the same basis (if available) would  have been  a bet ter  reference.)  

For  BH3 the various me thods  d o n ' t  differ much.  CI  (with double  excitations) 
differs f rom C P - M E T  by only 2% (small basis) to 3% (large basis). 

Keep ing  in mind  that  the various schemes d o n ' t  differ much,  one  realizes 
nevertheless  that  C E P A  (1), C E P A  (4) and C E P A  (3) are very close to  C P - M E T  
(deviations < 1%) with C E P A  (3) somewha t  too  small in absolute value (0.4% in 
the small and 0 .6% in the large basis) while bo th  C E P A  (1) and C E P A  (4) are too  
large by  roughly  the same amount .  

That  the results in the canonical  and  the localized representa t ion  are not  exactly 
the same is due  to approximat ions  in the de te rmina t ion  of  the P N O ' s  such that  the 
space spanned  by t h e m  is no t  exactly the same. (In the "d i rec t "  me thod  of 
Ahlr ichs  and Zirz  [21] where  P N O ' s  are avoided,  CI  and C E P A  (0) are exactly 
invariant  with respect  to  a change  f rom localized to  canonical  representat ion,  
C E P A  (1) is very  close to  invariant,  while C E P A  (2) changes  slightly with the 
representat ion.)  In  the present  study, scaling C P - M E T  to 100%, one  sees that  CI  
and C E P A  (0) (which should be exactly invariant,  as should be C P - M E T )  and 
C E P A  (1) (which is supposed  to be approximate ly  invariant) have practically the 
same value in the two representat ions ,  while C E P A  (2), C E P A  (3) and C E P A  (5) 
show differences of  a few tenths of a percent .  

I t  is no t ewor thy  that  Kel ly 's  idea that  the bilinear E P A (  = non  EPV)  terms should 
be negligible, is confirmed,  in the sense that  in practically all cases studied here  
their contr ibut ion to the  correla t ion energy  lies be tween  0 and 3%.  These  terms 
just make  the difference be tween  C E P A  (3) and C P - M E T .  
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The numerical value of the correlation energy depends, of course, on the basis, on 
whether 4 th order or oo order values are taken and on whether or not a PNO 
expansion is used. However the percentage values are rather insensitive to these 
variations (unless one wants to compare (DZ+P)  basis with minimal basis 
calculations). 

In Table 4 the analogous results for 1420 are collected. The trends are very much 
the same. Here the difference between CI and CP-MET amounts to 4-6%, but 
CEPA (0) differs from CP-MET by only - 1.5%. CEPA (1) is closest to CP-MET, 
CEPA (2) is not bad either, but CEPA (3) is somewhat too small ("error" 

1.5%). Again we confirm within a few tenths of a percent the relations found by 
Zirz and Ahlrichs [21]. 

In the example of HCN (Table 5) that has also been studied by Taylor et al. [23] 
CP-MET and CI differ by 7% and CEPA (0) is off by 2-3%. Again CEPA (1) is 
closest to 100%, followed by CEPA (4) (too large), CEPA (3) (too small) and 
CEPA (2) (too large). 

Especially illustrative is a study of N2 at various internuclear distances (Table 6). 
Close to the equilibrium distance (2.074 a0) the percentage values are, as one 
might have guessed, nearly the same as those of HCN at its equilibrium distance. 
For larger internuclear separation the pattern changes, however. The deviations 
from 100% increase considerably, as is e.g. seen in the column CI. CEPA (1) is 
closest to 100% for the two shorter distances, but deviates significantly and 
unsystematically from CP-MET for larger distances; on the whole it is rather 
CEPA (3) which parallels CP-MET best. Illustrative is the quantity called "norm 
of the correlation function". It is defined as 

and is a measure of the overlap S of the reference Slater determinant with the 
correlated wave function 

S = (1 +N~)-1/2. (27) 

For R ---2.074 ao, Nc is roughly 0.33 for all schemes and S = 0.95; at R = 2.5, 
S = 0.93 although differences between the various schemes become apparent; at 
R = 3.25 a0, Arc becomes larger than 1 -  and hence S smaller than 1/~/2 for 
CEPA (2), i.e. qb does no longer dominate the wave function, while CEPA (0) 
diverges. N~ is always smallest for CI, next comes CEPA (5) and then CP-MET 
and CEPA (3). 

At  R = 4 ao only CI, CEPA (1), CEPA (3) and CEPA (4) converge. 

For the potential curves of N2 and F2 only the results from a calculation in the 
localized representation are reported. For canonical orbitals the results are pretty 
much the same near the equilibrium distances, but for larger distances (where the 
results are poor anyway) the calculations in the canonical representation show 
much poorer convergence behaviour. 
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Fig. 1. Potential curves for the N2 ground state in CP-MET, SD-CI and CEPA variants compared with 
the experimental one 

On Fig. 1 the potential curves obtained from the various schemes are compared 
with the experimental curve. It can be seen that near the equilibrium geometry all 
curves are quite good and that for large distances all curves become poor. On the 
whole the C EPA (2) curve agrees best with experiment, while the equilibrium 
distance and the force constant are best obtained from CEPA (0) (see Table 8). 
This result should not be overinterpreted. Here  no single substitutions are 
included and we have seen elsewhere [50] that these have a nonnegligible effect on 
the force constants (in lowering them) and that CEPA (2) including single 
substitutions gives currently excellent agreement with experiment. With singles 
the C EP A (0) values probably become somewhat too small. 

In fact Zirz and Ahlrichs (private communication) found with a slightly larger 
basis ((10, 6, 2) in the contraction [6, 4, 2]) and inclusion of single substitutions 
force constants for N2 roughly 1.5 units smaller than ours, such that CEP A  (2) 
reproduces the experimental value almost exactly. 

The analogous results for F2 are collected on Table 7 and illustrated on Fig. 2. 
Here  all schemes except CEPA (0) converge up to 7 a0 (and probably for even 
larger distances) provided that one uses the localized representation (in the 
canonic one or the o--w-separation divergences occur earlier). 
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Table 8. Equilibrium distance (r e ) in a0, force constant (k e) in mdyn//~,  harmonic vibration frequency 
(tOe) and anharmonicity (toex e ) in cm 1, minimum energy (Emi n) in hartree for N2 and F2 in different 
approximations (partially localized: tr-Tr-separation) 

r e ke  tOe O)eX e -Emin 

N2 

F2 

CI-D 2.061 26.4 2529 14.3 109.26388 
CEPA (0) 2.082 23.8 2402 17.5 109.29525 
CEPA (2) 2.079 24.2 2421 16.5 109.29275 
CEPA (1) 2.075 24.8 2450 15.9 109.28694 
CEPA (3) 2.071 25.2 2474 15.3 109.28133 
CEPA (4) 2.077 24.5 2437 16.1 109.28915 
CEPA (5) 2.068 26.1 2516 n.d. 109.27612 
CP-MET 2.074 24.8 2452 15.3 109.28543 
exp. a 2.074 22.92 2358.6 14.324 

CI-D 2.604 6.74 1097 8.71 199.13566 
CEPA (0) 2.678 4.74 921 16.38 199.17276 
C E P A  (2) 2.666 5.15 959 12.97 199.17062 
CEPA (1) 2.651 5.57 998 10.84 199.16538 
CEPA (3) 2.639 5.89 1026 9.93 199.16026 
CEPA (4) 2.658 5.36 979 11.65 199.16752 
CEPA (5) 2.630 6.13 1047 9.43 199.15525 
CP-MET 2.634 6.06 1041 9.53 199.16279 
exp. a 2.668 4.70 916.6 11.236 

a Ref. 65. 
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To be frank, all schemes become unreliable for the dissociation of a single or 
multiple bond as long as one starts f rom a single Slater determinant  as reference 
function. I t  is also of minor  importance  that C E P A  (2) is, on the whole, closest to 
exper iment  (probably because it simulates to some extent the inclusion of triple 
substitutions) and that C E P A  (3) is closest to C P - M E T  (since C P - M E T  itself is not 
bet ter  than any other  scheme, except D-CI) .  One may note that C P - M E T  seems 
to lie always above the experimental  curve, as if it were an upper  bound (which it 
strictly cannot  be). 

One may regard the dissociation of a covalent bond as a case of near  degeneracy. 
Two other examples of near  degeneracy are realized for the Be a tom (where the 
configuration lsZ2s 2 is near  to degeneracy with ls22p 2) and the Be2 molecule. 

The results for the Be a tom are collected in Table 9. As it is characteristic for the 
case of near  degeneracy (see Sect. 3) one notes a large difference between C E P A  
(0) and other  schemes ( ~ 8 %  deviation) while these agree rather  well among each 
other. 

Be2 is a very " tough"  molecule for the theoretician. Several recent  calculations 
[51-55]  have led to ra ther  strange conclusions. There  has mainly been a contro- 
versy whether  this molecule has a "van  der Waals"  minimum near  8 a0 or a 
"chemical"  minimum near  5 ao, or both. We do not want to settle this controversy, 
but ra ther  contribute to the explanation why this controversy occurs. Be2 is for all 
internuclear distances a closed shell system, so the right dissociation does not pose 
a problem. 

We have per formed various C E P A  and C P - M E T  calculations both at R = 
40 a 0 ( - ~ )  and at R -- 5 a0 and collected the results in Table 10. The variation of 
the correlation energy between the different schemes is about  as expected. The 
rather  large differences between the canonical and the localized representat ion 
are in par t  an artifact of the P N O  approximation and an indication that one should 
go beyond it. The  change in the correlation energy between R - ~ and R = 5 a0 
varies in the different scheme between - 3  and - 1 0  mh. The SCF repulsion at 
R = 50 is 8.60 mh and one realizes that the net effect of SCF repulsion and change 
of the correlation energy is attractive for some schemes (e.g. C E P A  (0) or C E P A  
(2) canonical) and repulsive for other  schemes. 

CP-MET 61.060 mh 
CEPA (0) 108.46 % 
CEPA (2) 100.33 % 
CEPA (1) 100.16 % 
CEPA (4) 100.31 % 
CEPA (3) 99.99 % 
CEPA (5) 98.06 % 
CI-D 97.97 % 

Table 9. Be atom ground state (EscF = -14.57283l h). 
Negative correlation energy for CP-MET (including K 
shell) in mh and for the other variants in % of CP-MET 
(canonical representation) 
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Table 10. Negative valence shell correlation energies -Eeorr of Be 2 at R = 40 a 0 
and lowerings AEcorr of the valence shell correlation energy from 40 a0 to 5 a o in 
rnh in the canonical and the localized representation. 

EScF(R = 40 ao) = -29.14566 h 

AEsc F =EscF(R = 5 a o ) - E s c v ( R  = 40 ao) = 8.60 mh 

can. loc. 

-Ecorr(R = 40 ao) AE . . . .  Ecorr(R = 40 ao) AE .. . .  

CP-MET 94.82 5.06 90.27 3.54 
CEPA (0) 109.26 9.74 100.31 6.20 
CEPA (2) 101.12 9.25 90.27 7.69 
CEPA (1) 97.12 7.36 90.27 5.52 
CEPA (4) 97.22 7.43 90.27 5.66 
CEPA (3) 92.94 6.80 90.27 3.62 
CEPA (5) 89.56 6.70 87.99 3.23 
CI-D 89.65 6.61 83.38 5.11 

The crux is that the SCF interaction varies very little with distance, much less than 
the energy for a typical closed-shell repulsion does [56] and that therefore an 
extremely high accuracy of the correlation energy is necessary in order to obtain a 
qualitatively correct potential curve. The CEPA or CP-MET level is obviously not 
enough since it is uncertain to within a few mh. Unless one is able to obtain the 
correlation energy with an accuracy of a few tenth of a mh one has no chance to 
locate the minimum of Be2. 

The last example that we want to discuss is the B H  molecule (Table 11). For its 
ground state a full CI calculation had been performed by van der Velde [57] and 
we could hence compare this with our various schemes in the same basis. We note 
that CEPA (2) and CEPA (4) are closest to "full CI"  and that CP-MET misses 
about 2% of the "full CI"  energy. 

6. Conclusions 

1. Th~ numerical results obtained from CP-MET and from CEP A  are even closer 
than one might have anticipated. On the whole (including a wider range of 
internuclear separations) the CP-MET and CEP A  (3) correlation energies differ 
by about 1-2%. This confirms Kelly's conjecture [38] that the non-linear non- 
EPV terms are relatively unimportant. 

That this holds both in the canonical and the localized representation (though 
slightly better  in the localized one) is an indication that this result is not limited to 
molecules with well-localizable bonds. The authors have often met the prejudice 
that CEPA is limited to systems with localizable electrons. This is not true, since 
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Table 11. BH at R = 2.336 (basis from Ref. 57), nega- 
tive valence shell correlation energies in mh (canonical 
representation) 

this work a b 

CI-D 68.3 69.4 
CEPA (5) 68.5 69.7 c 
CEPA (3) 69.7 70.9 
CEPA (1) 70.9 72.0 
CEPA (4) 71.0 72.2 c 
CEPA (2) 72.0 73.3 
CEPA (0) 74.0 75.5 
CP-MET 70.4 70.8 d 
CC-SD - -  71.6 c 
CI (full) - -  72.7 

a Only doubles (Escv = -25.1055 h). 
b With singles and doubles from Ref. 18 (Escv = 
-25.1056 h). 
c This work corrected for contribution of singles (ca. 
0.8 mh) and estimated PNO-deficiency (ca. 0.4 mh). 
d Corrected for PNO-deficiency only. 

one can perfectly use the canonical representation.  An advantage of the localized 
representat ion is that more  off-diagonal blocks vanish practically and that the 
computer  t ime goes with a smaller power  of the number  of electrons. 

2. If  one limits the comparison to near-equil ibrium geometries,  C E P A  (1) and 
C E P A  (4) are closest to CP-MET,  while C E P A  (2) yields a somewhat  larger (in 
absolute value) correlation energy. If  one compares  physical propert ies  with 
"exac t"  (experimental) ones, C E P A  (2) is often bet ter  than other CEPA-variants .  
One  can understand this because the C E P A  (2) energy shift, although it looks 
incorrect for inter-pairs, simulates in a way important  triple substitutions [11, 58]. 
In the case of Be2 for large internuclear separation where triple substitutions play 
an extremely important  role, they are almost exactly simulated by C E P A  (2) [59]. 

Zirz and Ahlrichs [21] gave some evidence that the exact results are generally 
bracketed by C E P A  (1) and C E P A  (2), this even for B H  where a strong dynamical 
correlation is present.  

3. The various CEPA-var ian ts  lead to very close results if the "no rm of the 
correlation function" Nc is small, i.e. if the correlated wave function �9 is mainly 
determined by a single Slater determinant  qb and "dynamical  correlat ion".  In this 
case even C E P A  (0) seems to be good enough. 

4. Significant differences, mainly between CEPA (0) and the other  CEPA-  
variants occur if qb is near-degenera te  with some other  configuration, i.e. if 
"non-dynamica l"  correlation effects occur and lead to a large norm of the 
correlation function. This is always the case if one wants to dissociate a covalent 
bond. If Nc becomes too large all C E P A  variants and C P - M E T  fail, but C E P A  (2) 
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appears to be the best choice of all variants. In order  to get reliable potential 
curves one ought to start from a multi-configurational reference function. 

5. An essential question is: "does it pay to implement the additional CP-MET 
terms into a C E P A  program and use them routinely?" The programming effort 
has been considerable but  this has only to be done once and does no longer count. 
The overall computer  time (including the integral evaluation and the SCF time), in 
the examples studied was roughly 130% of that of a CEP A  calculations with the 
same basis. This again may seem not exceedingly more. Quite critical is the extra 
demand of peripheral storage, which is a bottleneck at our computer  and limits the 
size of molecules to be treated. Anyway the additional effort may be regarded as 
tolerable and it may even be reduced if one does not base the method on the PNO 
expansion. However,  the advantages of CP-MET in all cases studied by us have 
turned out to be minimal. Either both CP-MET and C E P A  yield acceptable 
results (namely for "good"  closed shell molecules) or both fail (namely if the wave 
function is not dominated by a single Slater determinant) and then one has to look 
for an improved method anyway. There may be cases (a referee suggested that 
molecules with delocalized 7r-systems might fall in this class) where CP-MET is 
really superior to CEPA, but we are doubtful about this. 

One can, of course, regard CEPA as an approximation to CP-MET and conclude 
from this that CP-MET should be a priori better. But even CP-MET is not the final 
truth and an approximation itself and the CEP A  variants can also be justified 
without referring to CP-MET.  

We conclude that we do not see any stringent reasons to prefer CP-MET over 
CEP A in "normal"  situations (where to be precise we choose CEP A  (2)). When 
CEPA becomes critical one should go one step further anyway. 

6. One of the most interesting questions is of course which is the practicable next 
step in a hierarchy of increased sophistication. Let  us, to this end, first recall the 
drawbacks of both CP-MET and CEPA: 

(a) These methods are non-variational, they do not provide upper bounds to the 
energy. 

(b) Only double substitutions are accounted for, although the inclusion of single 
substitutions is no serious problem - and they often turn out to be quite important 
[50]. 

(c) The reference function is limited to a single configuration state usually, even 
to a closed-shell Slater determinant, but the generalization to arbitrary single 
configuration states is straightforward both on CEPA [11, 60] and CP-MET level 
[61]. 

(d) The calculated quantities are total energies although what one is really 
interested in are in many cases rather energy differences. 

(e) The wave operator  in the intermediately normalized form is not separable 
[62]. This is usually not recognized, because it only applies to a universal 
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(mul t i s t a t e )  w a v e  o p e r a t o r ,  n o t  w h e n  o n e  j u s t  w a n t s  to a p p l y  it to a g r o u n d  
s ta te .  

T h e  d r a w b a c k s  (a), (d) a n d  (e) (of wh i ch  o n l y  (a) is u sua l l y  r e g a r d e d  as ser ious)  c an  
be  o v e r c o m e  b y  u s i n g  t h e  u n i t a r y  w a v e  o p e r a t o r ,  t he  t h e o r y  of  wh ich  will  b e  
o u t l i n e d  in  a s e p a r a t e  p a p e r  [62].  

T o  o v e r c o m e  d r a w b a c k  (b) o n e  has  to  i n c l u d e  t r ip le  s u b s t i t u t i o n s ,  wh ich  has  

a l r e a d y  b e e n  d o n e  in  s o m e  specia l  cases  [63]  a n d  wh ich  is qu i t e  c u r r e n t  i n  n u c l e a r  
phys ics  [34] .  

I n  p r i n c i p l e  d r a w b a c k  (c) c an  b e  a v o i d e d  if o n e  s ta r t s  f r o m  a m u l t i c o n f i g u r a t i o n  
r e f e r e n c e  f u n c t i o n .  O n e  m u s t  p r o b a b l y  f ind  a s c h e m e  tha t  c o m b i n e s  all t hese  
i m p r o v e m e n t s .  
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