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Comparison of CEPA and CP-MET Methods
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The known CEPA variants CEPA (v) with v =0, 1, 2, 3 and two new ones
with v = 4, 5 are compared both formally and for various numerical examples
with CP-MET. The main conclusions are: 1. In those situations where both
CP-MET and the CEPA variants are justified (i.e. for “good” closed shell
states) the correlation energies obtained with the 7 different schemes differ
very little (by something like +£2%), with CEPA (1) closest to CP-MET
(difference usually a fraction of 1%) and CEPA (4) nearly as close; this is
rather insensitive to whether one uses canonical or localized orbitals. Even
CEPA (3) is not too far from CP-MET, which confirms an earlier suggestion of
Kelly. 2. In those cases where one of the 7 schemes fails (e.g. due to near
degeneracy as in covalent molecules at large internuclear distances) the other
6 usually fail as well, though CEPA (0) is then somewhat poorer than the other
schemes. Then no longer CEPA (1) butrather CEPA (3) is closest to CP-MET
and then all schemes converge much better in a localized representation. 3.
CEPA (2) usually leads to best agreement with experiment since it simulates to
some extent triple substitutions. In none of the studied examples does CP-
MET show a significant superiority as compared to the other schemes. Possible
improvements to extend the domain of applicability of these methods are
discussed.

Key words: Electron correlation — Coupled electron pair approximation
(CEPA) ~ Coupled cluster (CC) — Coupled pair many electron theory (CP-
MET) - Many-body perturbation theory (MBPT) — Mgller—Plesset pertur-
bation theory (MP-PT) - Near degeneracy.

1. Introduction

A method, called CP-MET (coupled pair many electron theory) developed by
Cizek [1]in 1966 for the treatment of electron correlation in atoms and molecules,

0040-5744/81/0059/0387/$05.00



388 S. Koch and W. Kutzelnigg

based on earlier work of Coester and Kiimmel [2, 3] in nuclear theory, has been
“discovered” for large-scale ab initio quantum chemical calculations only quite
recently [4-6, 22, 23].

That this did not occur earlier must to some extent be ascribed to the fact that
Cizek’s paper was hard to read, and this not only because it was formulated in
terms of diagrams at a time when diagram techniques were not yet as popular in
theoretical chemistry as they are nowadays.

The apprehension of Cizek’s method by people working with traditional quantum
chemical methods such as CI [7] was made difficult by a difference in philosophy,
so to say. The CI equations are easily explained to a beginner as eigenvalue
equations of the matrix representation of the Hamiltonian in a basis of Slater
determinants or of configuration state functions, although the real difficulties arise
when it comes to expressing the matrix elements between configurations in terms
of the integrals over the orbital basis [7]. However this second step, as formidable
as it may be, can be regarded as “‘technical”, one does not need to understand it in
all details, in order to understand what CI is, unless one wants to write a CI
program. In Ciéek’s method, however, the two analogous steps were mixed from
the very beginning. There was no access to the theory for areader who did not care
about what in the field of CI would be regarded as technical details.

That a two step formulation analogous to that current for CI is also possible for
CP-MET, and that what we regard as the physical essence of CP-MET can be
written in two lines, became evident only later [8, 9] in spite of an earlier
comparison of the traditional and the diagrammatic approaches to CP-MET [10],
in which the main stress was put on demonstrating the superiority of the diagram
technique.

If one cares less about differences in the original presentation, CP-MET and CI
have, in fact, much in common and realizing this one can use the experience that
has meanwhile been accumulated in the field of CI [7] to implement the CP-MET
features into a traditional CI program.

CEPA, the “c oupled electron pair approximation” [11, 12], has unlike CP-MET
from the very beginning been developed in the context of large scale ab initio
quantum chemistry in a rather pragmatic way. That CEPA and CP-MET were —
apart from their admitted common source in IEPA (the “independent electron
pair approximation” [8], which is the same as Sinanoglu’s ‘“‘many-electron
theory” MET [13] or Nesbet’s [14] two particle~Bethe~Goldstone theory) —
intimately related, became fully obvious only later [8, 9].

CEPA, or rather CEPA-PNO (PNO for pair natural orbitals) has been conceived
[11] as a generalization of IEPA-PNO[15, 16]. Although PNO-CI[11] has been
developed simultaneously as a variant of traditional CI (limited to double
substitutions), which made the relation of CEPA to CI very clear, it had not been
realized by the traditional CI people for quite a while that the basicideas of CEPA
can be easily implemented into any kind of CI program and are not limited to the
use of PNO’s. The “Davidson correction” to CI[17] was a step in the direction of
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CEPA [18] though this was first not realized. This correction had in fact been
studied earlier [15] and can even be traced further back [13]. The relations of the
“Davidson correction” with earlier work and a generalization of it have been
discussed by Davidson and Silver [ 19]. Nowadays the implementation [18, 20, 21]
of CEPA into so-called “direct CI-methods’ is a serious alternative to CEPA-
PNO.

After it had been realized that CEPA and CP-MET differ by the presence of a few
extra terms in CP-MET, Taylor et al. [22, 23] were the first to implement these
CP-MET terms into the Karlsruhe CEPA-PNO program [ 12]. Taylor et al. had to
face serious computer limitations and they were forced to use strongly truncated
PNO expansions, which introduced a significant numerical noise into the results.
Moreover their formulae [24] did not seem to be fully correct. After we had
realized that it is nearly hopeless to derive these by hand we developed a computer
program for their construction [4].

After Taylor et al. [22, 23] afew more CP-MET computer programs not based on
PNO’s for ab initio applications were developed, mainly by Bartlett and Purvis [ 5]
and by Pople et al. [6] who introduced a new name (coupled cluster) and a new
abbreviation (CC). The program used in the present paper has been coded
independently [4]. An interesting variant of CP-MET has been presented by
Nakatsuji and Hirao [25], some formal development was also carried out by the
Harris—-Monkhurst group [26, 27] and by Paldus [28].

The aim of the present paper is to compare CP-MET with various CEPA-variants
[8]. The formal comparison (see also Refs. 8 and 17) will be given in Sect. 2 and
numerical results will be discussed in Sect. 3. We also consider situations where
both CEPA and CP-MET must fail, e.g. for potential curves at large distances of
systems that dissociate into open shell states.

2. The Formal Relation Between CI, CEPA and CP-MET

In all three schemes we start from a reference function @ (e.g. a closed shell Slater
determinant) and search for a wave operator W that transforms @ into an
improved wave function ¥ (in intermediate normalization)

T=WwWao; (B|W|D)=(D|D)=1 (1)
W is expanded in a set of basis operators R,

w=1 +§ CkRk (2)

where the R, are usually single and double substitution (excitation) operators
Rf=aza, R =aaiaa; ®3)

from spin orbitals y; occupied in ® to spin orbitals ¢y, unoccupied in ® (virtual).
The s, are supposed to form an orthonormal set.
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The CI equations can be obtained by assuming that ¥ satisfies the Schrodinger
equation

HY=H®+) ¢,HR, ®=EV=E®P+E Y ¢,R, P 4)
k k
on multiplying it on the left by (®| or by (®|R;
(@H|®)+ o (B|HR|) = E (5a)
(®|RH|®) +§ ¢ {®|RTHR,|®)=Ec,. (5b)

The CI equations are usually formulated for a ¥ normalized to unity, but this is a
minor detail.

An alternative — and more convincing —way to the CI equations goes via the
variation principle. One requires that the expectation value (¥|H [¥)/(¥|¥) is
stationary with respect to variation of the ¢, and gets the condition (5b), while the
stationary energy is given by (5a).

The CI energy is “variational” i.e. it furnishes an upper bound to the true energy,
but it is — for the operator basis R, limited to single and double substitution
operators — not “size consistent” (this name [ 6] is now commonly used, thoughit is
somewhat misleading) —i.e. it has not the correct dependence on the number of
electrons [15,29-31].

Rayleigh-Schrédinger perturbation theory (but not Brillouin—Wigner pertur-
bation theory), either starting from the bare nuclear Hamiltonian or, following
Mogller and Plesset [32], from the Hartree—~Fock Hamiltonian, is ““size consistent”,
but it has other drawbacks, the perturbation series may not converge at all or
converge too slowly.

One can take care of the correct dependence on the particle number in the
non-perturbative context, if one replaces the linear expansion (2) of the wave
operator by the exponential form

W =exp S =exp {% dkRk} (6)

proposed by Coester and Kiimmel [2, 3] (and suggested even earlier by Hugen-
holtz [33] from an analysis of perturbation theory). For a review of applications of
this ansatz in nuclear theory see Kiimmel et al. [34].

Multiplying the Schrodinger equation
He’®=Ee°® (7)
on the left by (®| or by (®|R; leads to
(D|H e°|®) = E(D|e®|®D) (7a)
(P|RiH e®|®)=E(D|R} e°|®). (7b)
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If @ is a closed shell Slater determinant and if the operator basis {R, } contains only
double substitution operators the power series expansion of e® in (7) breaks off
and one gets the CP-MET equations

(®|H |®)+(D|HS|®)=E (8a)
(D|R;H|®)+ (DR HS|®)+ KPR HS*|®) = E(P|RS|D) (8b)
which can, in view of (6), also be written as
k
(<1>|R VH|D)+Y d; (d)[R + HR|®) +3 Y ddn{D|R;HRR,,|®) = Ed,. (9b)
3 Im

If the basis contains single substitution operators as well, (8a) contains also a term
in S and the expansion of (7b) goes up to O(S*).

While the CI equations (5) can also be obtained as stationarity conditions for the
energy expectation value, this is not the case for the CP-MET equations (9). If one
tries to make (W|H [¥)/(¥|¥) stationary, one gets terribly complicated equations
and nobody has so far bothered to solve them (for some attempts on these lines see
however Ref. 35).

The energy E obtained from (9) is not an upper bound to the true energy and it is
therefore hard to judge the quality of a CP-MET calculation from the accuracy of
the energy.

There is a possibility to reconcile size consistency and variational stationarity,
namely by using the unitary exponential ansatz [8, 36]

W =e“, o=—0c". (10)

A more detailed account of the theory [36] based on this ansatz will be published
elsewhere.

The system (9) is non-linear; it can be solved iteratively, e.g. by neglecting the
non-linear terms in the first iteration cycle.

Of course, if one neglects the bilinear terms in (9b) altogether one gets the CI

system (5) which is not size consistent. One rather must substitute E in (9b) from
(9a)

(D|R;H|®)+Y. d(D|RLHR,|®)+3 ¥ dd..(P|R{HRR,,|D)
1§ Im
= (DH|®)+3. dud (B[HR/|) o
and ignore then all bilinear terms in order to get a zeroth-order approximation

(DR H|®)+Y, d(D|R; HR,|®) = d; (D|H|D) (12)
i

which is size consistent. Eqn. (12) (together with 9a) represents the “linear
version” of CP-MET [1] and is now usually called CEPA (0) [8]. Eqn. (12) differs
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from the CI equation (5b) by the replacement of the CI energy E by the
“unperturbed” energy (®|H|®).

CEPA (0) looks very appealing since many other ways to solve the many body
Schrodinger equation also lead to CEPA (0) as the first non-trivial approach. One
gets there from the unitary ansatz (10) [8], as well as from perturbation theory if
one searches for the optimum partition of the Hamiltonian H into an unperturbed
H, and a perturbation V' [37]. (For still another way [18] see the end of this
section.)

Unfortunately CEPA (0) is never exact, even not for a supersystem that consists of
non-interacting two-electron systems, e.g. He atoms at pairwise infinite distance.
However all CEPA-variants to be discussed below (except CEPA (5)) are exactin
this special case (provided that single substitutions are included and that one uses
localized MO’s).

Even if one does not want to neglect all bilinear terms in (11), one realizes that
many of these terms on the Lh.s. and the r.h.s. of (11) cancel, namely all those that
can be represented by “unlinked diagrams” [8].

One can argue that the remaining (not cancelled) terms on the Lh.s. of (11) are
small and of arbitrary sign, such that their net contribution may be negligible, and
keep only the remaining terms on the r.h.s.

where the subscript L stands for linked. This explicitly means that only such terms
are taken in the sum where the operators R; and R, have at least one index in
common. (Paldus [28] points out that one should use the term “connected”’rather
than “linked” to be conform with the meaning of these terms in perturbation
theory. He is probably right, but the tradition is in favour of “linked” and
misunderstandings are hardly possible, since we are not in the framework of
perturbation theory anyway.)

The approximation characterized by Eqn. (13) has been proposed by Kelly [38]in
a slightly different context a few years before Cizek’s presentation of CP-MET.

Let us, for the moment, refer to this as Kelly’s approach. Kelly himself has never
applied it, he became more interested in perturbation theory (MBPT) [39].

We have to point out a source of possible misunderstanding. In our
nomenclature — because we argue in terms of particles only, i.e. we do not use the
particle-hole formalism - there is only a partial cancellation of the terms on the
r.h.s. of (11), in fact those terms on the r.h.s. that do not cancel are those taken
care of in Kelly’s approach (13). In an alternative formalism that is closely related
to MBPT, nothing is left on the r.h.s. and the ‘“Kelly terms” appear on the Lh.s.
with negative sign as so-called EPV (“‘exclusion principle violating’’) terms. The
argument is then, that EPV terms are usually quite large and must, at variance
with “non-EPV” or “EPA” (“exclusion principle allowed”) terms of the same
order, not be neglected.
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We can write CI, CEPA (0) and Kelly’s approach in one common set of equations

(D|H|®)+Y. di(D|HR, |®)=E (14a)

k
k

with W, =E in the case of CI, W, = (®|H|®) for CEPA-0 and

W =(d|H|®)+Y, di(P|HR|P), (15)

1

with K for Kelly (where L means: linked to k). One can also write

W =(D|H|D)+AW. (16)
The energy shift AW is then 0 for CEPA (0), equal to the total correlation energy
AE =E —(®H|®) =Y d;(D|HR,|D) 17

1

for CI, and the sum of all contributions to AE which are linked to Ry, for Kelly.
One can suggest alternative energy shifts by the following arguments.

If one pair of electrons characterized by the occupied spin orbitals ¢; and ¢j; is
independent of the rest of the system, the energy shift to be taken for all double
substitutions from this pair is just the correlation energy

& = zb di’ (®|HR;?|®) (18)

of this pair (d%° and R’ in (18) have an obvious meaning, see Eqn. 3).

So the simplest modification of CEPA (0), that leads to the exact result for a
supersystem consisting of non-interacting pairs, consists in choosing the IEPA
energy shift [13-16]

W, = (D|H|D)+¢; (19)
Ly '}

for all R ;}b. This is the recipe of the standard CEPA version [11, 12] that has later
been called CEPA (2) [40].

Kelly’s approach, as it is formulated in Eqn. (13), has a different energy shift for
each substitution operator R{’. One can however interpret “linked’” with respect
to the occupied orbitals (holes) ¢; and y; only and get thus a slightly modified
scheme, called CEPA (3), which is essentially Kelly’s scheme but with a common
W, for every pair. ,

CEPA (1) is somewhat in between CEPA (2) and CEPA (3). Meyer [11, 40] was
led to CEPA (1) in searching for a scheme that is, in a special case, invariant with
respect to a unitary transformation from localized to canonical orbitals. Neither
CEPA (2) nor CEPA (3) have this invariance property. The best justification of
CEPA (1) is probably a heuristic one, the energy shift of CEPA (2) is “too small”,
that of CEPA (3) “too large”, so CEPA (1) should be a good compromise (see
however Sect. 3).
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Before the variants CEPA (1) and CEPA (2), originally written CEPA-1 and
CEPA-2, were proposed [40] the notation CEPA (1) had been used in a different
meaning [12] that has not been taken up since.

As to the inclusion of single substitutions in CEPA see Ahlrichs [18].

In a previous review [8] the definition of these various CEPA-variants was, for
simplicity’s sake, given on spin-orbital level.

In practice, one does, however, not want to use pairs of spin-orbitals, but rather
spin-irreducible pairs. For closed-shell states three types of pairs have to be
considered: II, °IJ and ‘IJ which are defined in terms of the (spin free) orbitals ¢;
and ¢, and where the superscripts s and ¢# mean that ¢; and ¢; are coupled to a
singlet or a triplet. One can then eliminate spin and interpret “linked” and
“unlinked” in terms of orbitals rather than spin orbitals. The expressions for the
energy shifts AW, get thus somewhat more complicated, but the computation is,
of course, much simplified. The energy shifts are collected in Table 1 (see also
Ref. 9).

Two new variants are included.

In CEPA (4) all interorbital contributions £;; to the energy shift are neglected
except the particular ‘e;; and ‘e;; for the pair IJ that one considers. For
intraorbital pairs the energy shift is the same as in CEPA (2), but for interorbital
pairs it contains g5 + &5, i.€. for these there is a larger shift. This is better justified
than the choice of CEPA (2) unless one argues that the formally too small shifts in
CEPA (2) simulate the effect of triple substitutions.

CEPA (5) is finally the analogon to CEPA (3) that is obtained if one does not start
from the Coester—Kiimmel e5-ansatz, but from the unitary ansatz (10) up to 3™
order in o, if one neglects the unlinked terms but keeps the EPV terms.

Table 1. Energy shifts for various CEPA-variants

AWUI) AW L) AW L)
CEPA(0) O 0 0
CEPA (2) &g ‘e ‘err
CEPA (1) en+3 ¥ Cex Hew +e5y +er +ey as W(LT)
K (=)
+em) +1 ¥ Cex
K (=1J)
+ie +oek ek )
1 5 5 13
CEPA(3) ep+ 2 Cex eprey+3 ey +3ey en+tey+sen iz ey
K (=I)
+ex) +3 Y Co e +3 ¥ Cem +tex
K (=1J) K (#IT)
+oesx ek ) +e5x +ex)
s 13
CEPA (4) ey e +ey+3 e+ ey e +em+3 ey +1i ey
CEPA (5) see text
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The energy shifts in CEPA (5) are § of those of CEPA (3), but in CEPA (5) Eqn.
(14) is replaced by

(D|H|®)+4 L, (®|HR, |®)+1 % dt {®|R7HR,|®)~ (D|H|D)5,.}d, = E
’ (202)

(@R ;H|q>>{1 D Idl|i} + 3 IR HR |0, = Wid. (20b)

CP-MET differs from CEPA (3) by the presence of various nonlinear terms. We
have implemented them in the PNO formalism. The formal expressions are too
lengthy to be given here, but they are available on request.

CEPA and CP-MET are also related to perturbation theory (PT) (for a recent
comparison see Ahlrichs[18], who made the important statement, that all existing
MBPT schemes are either identical to or approximations to one of the CEPA
variants). The ‘“Mgller-Plesset perturbation theory” (MP-PT) used by Pople et al.
[41] which is formulated purely analytically, and the diagrammatic “many-body-
perturbation theory” (MBPT) used by Robb [42], Silver et al. [43] and others
[44-46] are completely identical, except of course for different computer imple-
mentation and for analysis and interpretation.

We assume that the Hartree~Fock ground state @ is always the reference function.

Then MBPT (2), i.e. 2" order PT, is of “IEPA-type”, in other words to 2°¢ order
in PT the pairs behave as independent. Couplings between the pairs show first up
to 3™ order. To 2°¢ order IEPA and the exact solution agree. IEPA can be
obtained by summing a special class of diagrams, namely all independent pair-like
diagrams (mainly the so-called “ladder diagrams”) to infinite order [47].

PT to 3" order is of “CEPA-type”, i.. to 3™ order in the perturbation parameter
of MP-PT the exact solution, all CEPA-variants and CP-MET agree. A certain
procedure that takes care of all diagrams of 3" order and sums other similar
diagrams to infinite order [46, 48] leads in fact to CEPA (0) [18].

Differences between the various CEPA-schemes and CP-MET first show up in 4%
order of PT [18].

However, none of these schemes (not even CP-MET) agrees with the exact
solution to 4™ order. In 4™ order PT contributions show up that are not
expressible through electron pairs (or single substitutions), but which require
electron triples. These terms are rather complicated and most applications of 4™
order PT are limited to so-called SDQ-MBPT (4), (S for single, D for double,
Q for quadruple substitutions, where the latter are actually pairs of double
substitutions).

SDQ-MBPT (4) is identical with the perturbation expansion up to 4™ order of
CP-MET, while full 4™ order MBPT contains terms that are not included in
CP-MET. But conversely full 4" order MBPT does not contain certain terms that
are taken care of by CP-MET, namely terms of 5" and higher orders. It has been
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pointed out previously [5, 6] that in many practical cases the results of SDQ-
MBPT (4) are very close to those of CP-MET, which indicates that in those cases
5 and higher orders are not important, but there is no reason to believe that this s
always so.

Anyway the lowest non-trivial order in perturbation theory to which CP-MET
and the CEPA variants can be compared is the 4™ order. The 4™ order version of
CEPA (0) is D-MBPT (4), in which only double substitutions are taken care of,
while the 4" order version of CP-MET namely SDQ-MBPT (4) has already been
mentioned.

The 4" order approximations of the other CEPA variants can also be defined. Zirz
and Ahlrichs [21] have performed a numerical comparison of various CEPA-
variants and CP-MET on 4™ order level using also data from Bartlett and Purvis.
We are comparing these data with our oo order results in Tables 3 to 5.

3. Problems of Near Degeneracy

The determination of the CEPA or CP-MET coefficients leads to solutions of
systems of the type

Zz: (Hi — Wieba)dr = (21)
with
Hy =(®R{HR,;|®); by = (D|HR,|D). (22)

If W, is constant as in CEPA (0), the system (21) is linear, otherwise an iterative
solution through a chain of linear systems is necessary.

Of course, the solution of the linear system is only possible if the matrix
{H,, — W8, }is non-singular, for CEPA (0) if Hy,, i.e. the matrix representation of
the Hamiltonian in the space of configurations doubly (and singly) excited with
respect to @, has no eigenvalue equal to W, =E,= (<I>|H |<I>).

If @ is an approximation to a non-degenerate ground state one can expect that all
eigenvalues of {Hy} are higher than E, i.e. that in CEPA (0) no singularity
occurs, and a fortiori not in CP-MET or the other CEPA-variants, where in view
of the negative energy shifts W, <E,.

If & is degenerate with some other (doubly substituted) configuration @', such that
(®|H|®") =0, the matrix {Hy; — Eod,} may become singular, but the energy shift
of the other schemes (which lowers Eq to W, but does not lower E'=(®'[H|®"))
will usually make the other schemes well-behaved. Nevertheless, the results will
not be very reliable in any case, since it is without doubt a poor approximation to
include all (singly and) doubly substituted configurations with respect to @ but not
also with respect to @',

More interesting are situations where no @’ is exactly degenerate with ®, but
where @’ has an energy E’ only slightly above E, (so-called near-degeneracy). If
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|E’~E,| is smaller than or of the same order as the various energy shifts, large
differences between the various CEPA-variants are to be expected, and especially
CEPA (0) should overestimate the expansion coefficient of ®’.

Large differences between the CEPA variants are hence a warning, and an
indication of near-degeneracy.

One can argue that there should be “‘exact” energy shifts, which are usually not
known, but which lead to the exact coefficients of singly and doubly substituted
configurations and hence to the exact correlation energy

AE =Y. dihy (23)
k

(in the same basis of course).
An alternative expression for AE is

AE = Z‘; d;f (Hyi — Wi )d,. (24)
k,

One can conclude from this expression and its stationarity with respect to
variations of the dy, that differences in the W, affect AE basically as

SWi|di . (25)

If all coefficients are small (d, « 1: “dynamical correlation’), different energy
shifts have little effect on AE, while for large coefficients (“non-dynamical
correlation”), AE depends sensitively on the energy shift. However, let us stress
this again: a more sophisticated treatment of correlation is then necessary and
even CP-MET is not good enough (except, of course, for the trivial case of a
two-electron system, or for “effective two electron systems” as the Be atom,
where even IEPA is exact).

A model study in which near degeneracy situations were simulated, was recently
performed by Jankowski and Paldus [49].

4. Basis Sets

The basis sets were chosen so as to make possible a direct comparison with
previous results.

For BH; a minimal basis was chosen similar to that used by Taylor et al. [22]. The
other basis sets are usually of “double-zeta+ polarization” quality, and are
explained in Table 2. They allow a direct comparison with previous calculations.
For Be and Be, a larger basis was used.

5. Discussion of the Numerical Results
On Table 3 the results for the BH; molecule for two basis sets are presented.

To facilitate the comparison of the various methods, for each basis set the
CP-MET energies were arbitrarily used as reference values (100%). (This does
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Table 2. Basis sets used

BH,; (a) minimal STO(21/1) simulated by fully contracted Gaussians
(10 for 1sg, 4 for 25y, 5 for 2pg, 10 for 1syy) after Huzinaga [64]
(b) DZ+P: (951/51) Huzinaga basis contracted to (531/31)
with 14 (B) =0.61; 1, (H) = 0.65

H,O (951/51) contracted to (531/31)
with n,(0) = 1.25, m, (H) = 0.75
HCN (951/951/31) contracted to (531/531/31)
with 7,(C) = 0.7, 74 (N) = 0.95, , () = 0.8
N, (951) contracted to (531); n, =0.95
F, (951) contracted to (531); n, =1.4

BeandBe, (10+1, 5, 2) contracted to (8, 3, 2)
with 10s from Huzinaga [64], additional s with n, = 0.015;
1, =3.0, 1.0, 0.316, 0.12, 0.04 (the first three contracted with coefficients 0.02662,
0.07353, 0.40988)
nq = 0.35, 0.12

contracted are always the first (steepest) functions

not necessarily mean that we regard CP-MET as the best possible method. Full CI
in the same basis (if available) would have been a better reference.)

For BH; the various methods don’t differ much. CI (with double excitations)
differs from CP-MET by only 2% (small basis) to 3% (large basis).

Keeping in mind that the various schemes don’t differ much, one realizes
nevertheless that CEPA (1), CEPA (4) and CEPA (3) are very close to CP-MET
(deviations <1%) with CEPA (3) somewhat too small in absolute value (0.4% in
the small and 0.6% in the large basis) while both CEPA (1) and CEPA (4) are too
large by roughly the same amount.

That the results in the canonical and the localized representation are not exactly
the same is due to approximations in the determination of the PNO’s such that the
space spanned by them is not exactly the same. (In the ‘““direct” method of
Abhlrichs and Zirz [21] where PNO’s are avoided, CI and CEPA (0) are exactly
invariant with respect to a change from localized to canonical representation,
CEPA (1) is very close to invariant, while CEPA (2) changes slightly with the
representation.) In the present study, scaling CP-MET to 100%, one sees that CI
and CEPA (0) (which should be exactly invariant, as should be CP-MET) and
CEPA (1) (which is supposed to be approximately invariant) have practically the
same value in the two representations, while CEPA (2), CEPA (3) and CEPA (5)
show differences of a few tenths of a percent.

It is noteworthy that Kelly’s idea that the bilinear EPA(=non EPV) terms should
be negligible, is confirmed, in the sense that in practically all cases studied here

their contribution to the correlation energy lies between 0 and 3% . These terms
just make the difference between CEPA (3) and CP-MET.
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The numerical value of the correlation energy depends, of course, on the basis, on
whether 4™ order or c order values are taken and on whether or not a PNO
expansion is used. However the percentage values are rather insensitive to these
variations (unless one wants to compare (DZ+P) basis with minimal basis
calculations).

In Table 4 the analogous results for H,O are collected. The trends are very much
the same. Here the difference between CI and CP-MET amounts to 4-6%, but
CEPA (0) differs from CP-MET by only ~1.5%. CEPA (1) is closest to CP-MET,
CEPA (2) is not bad either, but CEPA (3) is somewhat too small (‘“error”
~1.5%). Again we confirm within a few tenths of a percent the relations found by
Zirz and Abhlrichs [21].

In the example of HCN (Table 5) that has also been studied by Taylor et al. [23]
CP-MET and CI differ by 7% and CEPA (0) is off by 2-3%. Again CEPA (1) is
closest to 100%, followed by CEPA (4) (too large), CEPA (3) (too small) and
CEPA (2) (too large).

Especially illustrative is a study of N, at various internuclear distances (Table 6).
Close to the equilibrium distance (2.074 a,) the percentage values are, as one
might have guessed, nearly the same as those of HCN at its equilibrium distance.
For larger internuclear separation the pattern changes, however. The deviations
from 100% increase considerably, as is e.g. seen in the column CI. CEPA (1) is
closest to 100% for the two shorter distances, but deviates significantly and
unsystematically from CP-MET for larger distances; on the whole it is rather
CEPA (3) which parallels CP-MET best. Illustrative is the quantity called “norm
of the correlation function”. It is defined as

Nc = V iéj az<:b ldgblz (26)

and is a measure of the overlap S of the reference Slater determinant with the
correlated wave function

S=(1+N2)"12 27

For R =2.074 ao, N, is roughly 0.33 for all schemes and S =0.95; at R = 2.5,
S ~(.93 although differences between the various schemes become apparent; at
R =3.25a,, N. becomes larger than 1-and hence S smaller than 1/\/2 for
CEPA (2), i.e. ® does no longer dominate the wave function, while CEPA (0)
diverges. N, is always smallest for CI, next comes CEPA (5) and then CP-MET
and CEPA (3).

At R =4 a, only CI, CEPA (1), CEPA (3) and CEPA (4) converge.

For the potential curves of N, and F, only the results from a calculation in the
localized representation are reported. For canonical orbitals the results are pretty
much the same near the equilibrium distances, but for larger distances (where the
results are poor anyway) the calculations in the canonical representation show
much poorer convergence behaviour.
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Fig. 1. Potential curves for the N, ground state in CP-MET, SD-CI and CEPA variants compared with
the experimental one

On Fig. 1 the potential curves obtained from the various schemes are compared
with the experimental curve. It can be seen that near the equilibrium geometry all
curves are quite good and that for large distances all curves become poor. On the
whole the CEPA (2) curve agrees best with experiment, while the equilibrium
distance and the force constant are best obtained from CEPA (0) (see Table 8).
This result should not be overinterpreted. Here no single substitutions are
included and we have seen elsewhere [50] that these have a nonnegligible effect on
the force constants (in lowering them) and that CEPA (2) including single
substitutions gives currently excellent agreement with experiment. With singles
the CEPA (0) values probably become somewhat too small.

In fact Zirz and Ahlrichs (private communication) found with a slightly larger
basis ((10, 6, 2) in the contraction [6, 4, 2]) and inclusion of single substitutions
force constants for N, roughly 1.5 units smaller than ours, such that CEPA (2)
reproduces the experimental value almost exactly.

The analogous results for F, are collected on Table 7 and illustrated on Fig. 2.
Here all schemes except CEPA (0) converge up to 7 a, (and probably for even
larger distances) provided that one uses the localized representation (in the
canonic one or the o-m-separation divergences occur earlier).
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Table 8. Equilibrium distance (r, ) in a,, force constant (k, ) in mdyn/A, harmonic vibration frequency
(w.) and anharmonicity (w.x, ) in em” !, minimum energy (E,,;,) in hartree for N, and F, in different
approximations (partially localized: o-7-separation)

Te ke W, WX, _Emin
CI-D 2.061 26.4 2529 14.3 109.26388
CEPA (0) 2.082 238 2402 17.5 109.29525
CEPA (2) 2.079 242 2421 16.5 109.29275
CEPA (1) 2.075 24.8 2450 15.9 109.28694
N, CEPA (3) 2.071 25.2 2474 153 109.28133
CEPA (4) 2.077 24.5 2437 16.1 109.28915
CEPA (5) 2.068 26.1 2516 n.d. 109.27612
CP-MET 2.074 24.8 2452 153 109.28543
exp.? 2.074 22.92 2358.6 14.324
CI-D 2.604 6.74 1097 8.71 199.13566
CEPA (0) 2.678 4.74 921 16.38 199.17276
CEPA (2) 2.666 5.15 959 12.97 199.17062
F, CEPA (1) 2.651 5.57 998 10.84 199.16538
CEPA (3) 2.639 5.89 1026 9.93 199.16026
CEPA (4) 2.658 5.36 979 11.65 199.16752
CEPA (5) 2.630 6.13 1047 9.43 199.15525
CP-MET 2.634 6.06 1041 9.53 199.16279
exp.? 2.668 4.70 916.6 11.236
2 Ref. 65.
L~
150
C/
4E o
mhi ]
"
100 A 2 3

/ 2
50 % " Sexp. | diss. limit”

3.0 4.0 5.0 6.0

Fig. 2. As Fig. 1 but for F,
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To be frank, all schemes become unreliable for the dissociation of a single or
multiple bond as long as one starts from a single Slater determinant as reference
function. It is also of minor importance that CEPA (2) is, on the whole, closest to
experiment (probably because it simulates to some extent the inclusion of triple
substitutions) and that CEPA (3) is closest to CP-MET (since CP-MET itself is not
better than any other scheme, except D-CI). One may note that CP-MET seems
to lie always above the experimental curve, as if it were an upper bound (which it
strictly cannot be).

One may regard the dissociation of a covalent bond as a case of near degeneracy.
Two other examples of near degeneracy are realized for the Be atom (where the
configuration 1s°2s” is near to degeneracy with 1s*2p?) and the Be, molecule.

The results for the Be atom are collected in Table 9. As it is characteristic for the
case of near degeneracy (see Sect. 3) one notes a large difference between CEPA
(0) and other schemes (~8% deviation) while these agree rather well among each
other.

Be, is a very “tough” molecule for the theoretician. Several recent calculations
[51-55] have led to rather strange conclusions. There has mainly been a contro-
versy whether this molecule has a “van der Waals” minimum near 8 a, or a
“chemical’” minimum near 5 a,, or both. We do not want to settle this controversy,
but rather contribute to the explanation why this controversy occurs. Be; is for all
internuclear distances a closed shell system, so the right dissociation does not pose
a problem.

We have performed various CEPA and CP-MET calculations both at R =
40 ag(~o0) and at R =5 a, and collected the results in Table 10. The variation of
the correlation energy between the different schemes is about as expected. The
rather large differences between the canonical and the localized representation
are in part an artifact of the PNO approximation and an indication that one should
go beyond it. The change in the correlation energy between R ~c0 and R =5 a,
varies in the different scheme between —3 and —10 mh. The SCF repulsion at
R = 5,is 8.60 mh and one realizes that the net effect of SCF repulsion and change
of the correlation energy is attractive for some schemes (e.g. CEPA (0) or CEPA
(2) canonical) and repulsive for other schemes.

Table 9. Be atom ground state (Egcp = —14.572831 h).

iy 61.060 f,nh Negative correlation energy for CP-MET (including K
ggiﬁ: 8; igg;g of’ shell) in mh and for the other variants in % of CP-MET
CEPA (1) 100. 16 0/: (canonical representation)

CEPA (4) 100.31 %

CEPA (3) 99.99 %

CEPA (5) 98.06 %

CI-D 97.97 %
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Table 10. Negative valence shell correlation energies —E . of Be, at R =40 a,
and lowerings AE ., of the valence shell correlation energy from 40 ayto 5 ag in
mh in the canonical and the localized representation.

Escr(R =40 ap) =—29.14566 h
AEscr=Egcr(R =5 ag) —Escr(R =40 ao) = 8.60 mh

can. loc.

_Ecm‘r(R =40 aO) AEcorr Ecorr(R =40 aO) A12(:orr

CP-MET 94.82 5.06 90.27 3.54
CEPA (0) 109.26 9.74 100.31 6.20
CEPA (2) 101.12 9.25 90.27 7.69
CEPA (1) 97.12 7.36 90.27 5.52
CEPA (4) 97.22 7.43 90.27 5.66
CEPA (3) 92.94 6.80 90.27 3.62
CEPA (5) 89.56 6.70 87.99 3.23
CI-D 89.65 6.61 83.38 5.11

The crux is that the SCF interaction varies very little with distance, much less than
the energy for a typical closed-shell repulsion does [56] and that therefore an
extremely high accuracy of the correlation energy is necessary in order to obtain a
qualitatively correct potential curve. The CEPA or CP-MET level is obviously not
enough since it is uncertain to within a few mh. Unless one is able to obtain the
correlation energy with an accuracy of a few tenth of a mh one has no chance to
locate the minimum of Be,.

The last example that we want to discuss is the BH molecule (Table 11). For its
ground state a full CI calculation had been performed by van der Velde [57] and
we could hence compare this with our various schemes in the same basis. We note
that CEPA (2) and CEPA (4) are closest to “full CI”” and that CP-MET misses
about 2% of the “full CI”’ energy.

6. Conclusions

1. The numerical results obtained from CP-MET and from CEPA are even closer
than one might have anticipated. On the whole (including a wider range of
internuclear separations) the CP-MET and CEPA (3) correlation energies differ
by about 1-2%. This confirms Kelly’s conjecture [38] that the non-linear non-
EPYV terms are relatively unimportant.

That this holds both in the canonical and the localized representation (though
slightly better in the localized one) is an indication that this result is not limited to
molecules with well-localizable bonds. The authors have often met the prejudice
that CEPA is limited to systems with localizable electrons. This is not true, since
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Table 11. BH at R =2.336 (basis from Ref. 57), nega-
tive valence shell correlation energies in mh (canonical

representation)
this work® v

CI-D 68.3 69.4
CEPA (5) 68.5 69.7°
CEPA (3) 69.7 70.9
CEPA (1) 70.9 72.0
CEPA (4) 71.0 72.2°
CEPA (2) 72.0 73.3
CEPA (0) 74.0 75.5
CP-MET 70.4 70.8¢
CC-SD — 71.6°
CI (full) — 72.7

* Only doubles (Egcp = —25.1055 h).

" With singles and doubles from Ref. 18 (Egcp=
-25.1056 h).

¢ This work corrected for contribution of singles (ca.
0.8 mh) and estimated PNO-deficiency (ca. 0.4 mh).

4 Corrected for PNO-deficiency only.

one can perfectly use the canonical representation. An advantage of the localized
representation is that more off-diagonal blocks vanish practically and that the
computer time goes with a smaller power of the number of electrons.

2. If one limits the comparison to near-equilibrium geometries, CEPA (1) and
CEPA (4) are closest to CP-MET, while CEPA (2) yields a somewhat larger (in
absolute value) correlation energy. If one compares physical properties with
“exact” (experimental) ones, CEPA (2) is often better than other CEPA-variants.
One can understand this because the CEPA (2) energy shift, although it looks
incorrect for inter-pairs, simulates in a way important triple substitutions [11, 58].
In the case of Be, for large internuclear separation where triple substitutions play
an extremely important role, they are almost exactly simulated by CEPA (2) [59].

Zirz and Ahlrichs [21] gave some evidence that the exact results are generally
bracketed by CEPA (1) and CEPA (2), this even for BH where a strong dynamical
correlation is present.

3. The various CEPA-variants lead to very close results if the “norm of the
correlation function’ N, is small, i.e. if the correlated wave function ¥ is mainly
determined by a single Slater determinant ® and “dynamical correlation”. In this
case even CEPA (0) seems to be good enough.

4. Significant differences, mainly between CEPA (0) and the other CEPA-
variants occur if & is near-degenerate with some other configuration, i.e. if
“non-dynamical” correlation effects occur and lead to a large norm of the
correlation function. This is always the case if one wants to dissociate a covalent
bond. If N, becomes too large all CEPA variants and CP-MET fail, but CEPA (2)
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appears to be the best choice of all variants. In order to get reliable potential
curves one ought to start from a multi-configurational reference function.

5. An essential question is: “does it pay to implement the additional CP-MET
terms into a CEPA program and use them routinely?” The programming effort
has been considerable but this has only to be done once and does no longer count.
The overall computer time (including the integral evaluation and the SCF time), in
the examples studied was roughly 130% of that of a CEPA calculations with the
same basis. This again may seem not exceedingly more. Quite critical is the extra
demand of peripheral storage, which is a bottleneck at our computer and limits the
size of molecules to be treated. Anyway the additional effort may be regarded as
tolerable and it may even be reduced if one does not base the method on the PNO
expansion. However, the advantages of CP-MET in all cases studied by us have
turned out to be minimal. Either both CP-MET and CEPA yield acceptable
results (namely for ““good” closed shell molecules) or both fail (namely if the wave
function is not dominated by a single Slater determinant) and then one has to look
for an improved method anyway. There may be cases (a referee suggested that
molecules with delocalized 7-systems might fall in this class) where CP-MET is
really superior to CEPA, but we are doubtful about this.

One can, of course, regard CEPA as an approximation to CP-MET and conclude
from this that CP-MET should be a priori better. But even CP-MET is not the final
truth and an approximation itself and the CEPA variants can also be justified
without referring to CP-MET.

We conclude that we do not see any stringent reasons to prefer CP-MET over
CEPA in “normal” situations (where to be precise we choose CEPA (2)). When
CEPA becomes critical one should go one step further anyway.

6. One of the most interesting questions is of course which is the practicable next
step in a hierarchy of increased sophistication. Let us, to this end, first recall the
drawbacks of both CP-MET and CEPA:

(a) These methods are non-variational, they do not provide upper bounds to the
energy.

(b) Only double substitutions are accounted for, although the inclusion of single

substitutions is no serious problem — and they often turn out to be quite important
[50].

(c) The reference function is limited to a single configuration state usually, even
to a closed-shell Slater determinant, but the generalization to arbitrary single
configuration states is straightforward both on CEPA [11, 60] and CP-MET level
[61].

(d) The calculated quantities are total energies although what one is really
interested in are in many cases rather energy differences.

(e) The wave operator in the intermediately normalized form is not separable
[62]. This is usually not recognized, because it only applies to a universal
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(multistate) wave operator, not when one just wants to apply it to a ground
state.

The drawbacks (a), (d) and (e) (of which only (a) is usually regarded as serious) can
be overcome by using the unitary wave operator, the theory of which will be
outlined in a separate paper [62].

To overcome drawback (b) one has to include triple substitutions, which has
already been done in some special cases [63] and which is quite current in nuclear
physics [34].

In principle drawback (c) can be avoided if one starts from a multiconfiguration
reference function. One must probably find a scheme that combines all these
improvements.

Acknowledgement. The computations were done on the INTERDATA (Perkin Elmer) 8/32 “mini-
computer” sponsored by Deutsche Forschungsgemeinschaft. The authors thank R. Ahlrichs and V.
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